标准差意义:就是衡量这个平均值的代表性的,越小越好,也可以说是衡量这组数据的离散程度。
应用例子:如果要从两个选手中选一个去参加比赛,可以根据他们的平时成绩来选.如果他们的平均成绩一样,那就比较标准差,那个小,就让那个去参加.如果平均值不一样大,你自己应该也会分析了吧!只不过那时候可能引出一个变异系数的问题.
标准差指统计上用于衡量一组数值中某一数值与其平均值差异程度的指标。标准差被用来评估价格可能的变化或波动程度。标准差越大,价格波动的范围就越广,股票等金融工具表现的波动就越大。 标准差的大小说明的一组数的波动问题。比如两个班的学生分数,标准差的大小能说明两个班的学生成绩谁的波动大,也就是哪个班的学生成绩稳定些,标准差大的不稳定些,标准差小的稳定些。
标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示.标准差是方差的算术平方根.标准差能反映一个数据集的离散程度.平均数相同的,标准差未必相同.
1、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定